Phase Composition of TiO_2 -Coated ZrO_2/Si_3N_4 Composite

H. X. Li, * J. K. Yu, K. Hiragushi, Y. Kayano and Y. Mizota

Okayama Ceramics Research Foundation, 1406-18 Nishikatakami, Bizen, Okayama 705-0018, Japan

(Received 20 May 1998; accepted 14 August 1998)

Abstract

The effect of TiO_2 coating on the phase composition of ZrO_2/Si_3N_4 composites was investigated both with pressureless-sintered samples and with hotpressed ones. The formation of ZrN could be suppressed by increasing in the amount of TiO₂ coated on $3Y-ZrO_2$. However, the existence of TiO_2 did little to accelerate the transformation of α - to β - Si_3N_4 . When combined with small addition of Y_2O_3 , the formation of ZrN could be further suppressed and the α to β -Si₃N₄ transformation could also be improved. The compositional variation of TiN grains with a rise in temperature was analyzed by using TEM and EDS. There was some solubility of zirconium ion into the TiN lattice. It increased with sintering temperature and caused the XRD peaks of TiN towards lower angles. © 1999 Elsevier Science Limited. All rights reserved

Keywords: TiO₂, ZrO₂, Si₃N₄, composites, coating.

1 Introduction

To improve the densification and mechanical properties of Si_3N_4 -based ceramics, the addition of ZrO_2 stabilized by suitable oxides, such as Y_2O_3 , CaO, or MgO into the Si_3N_4 matrix has proved to be one of the more effective methods.^{1–5} However, the reaction between Si_3N_4 and ZrO_2 which occurs above 1600°C according to thermodynamic analysis⁶ might result during the sintering process in the formation of zirconium nitride and/or zirconium oxynitride, these phases are easily oxidized at the intermediate temperatures (500–800°C) with a large molar volume increase which can generate cracks

and subsequently degrade the mechanical properties. To suppress the formation of ZrN and/or Zroxynitride, a number of approaches have been reported in the literature,^{4,5,7,8} such as lowering the densification temperature by adding sintering aids combined with hot-pressing or HIP sintering. It has also been demonstrated⁷ that more than 4.1 mol% Y₂O₃ in ZrO₂ can reduce nitrogen intake in the ZrO₂ lattice and suppress the formation of ZrN and/or Zr-oxynitride to some degree. This implied that more oxygen vacancies can inhibit the nitrogen absorption in the ZrO₂ lattice.

It has been reported⁹ that different reaction mechanisms occur in the systems Zr-Si-O-N and Ti-Si-O-N. The reaction between TiO_2 and Si_3N_4 can occur at temperatures as low as 1000°C according to reaction (1), where SiO_2 is present in the amorphous state; even at 1400°C, however, no reactions occur in the system Zr-Si-O-N. At much higher temperature, the reaction between ZrO_2 and Si_3N_4 can happen by reaction (2).

$$TiO_2 + 1/3 Si_3N_4 \rightarrow TiN + SiO_2 + 1/6N_2$$
 (1)

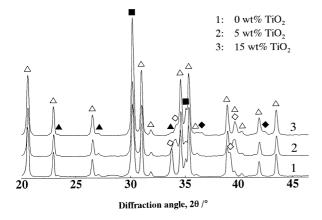
$$\frac{1/2 ZrO_2 + 1/3 Si_3N_4 \rightarrow 1/2 ZrN}{+ SiO(g) + 5/12N_2}$$
(2)

$$TiN + ZrO_2 \rightarrow TiO_2 + ZrN$$
 (3)

On the other hand, TiN is not oxidized by ZrO_2 in the Ellingham diagram calculated by Koji Watari *et al.*,¹⁰ i.e. the Gibbs free energy for reaction (3) is positive. Therefore, preparing a TiO₂ coating on ZrO_2 before incorporation into Si₃N₄ can prevent physical contact between ZrO_2 and Si₃N₄; the insitu formed TiN and the amorphous SiO₂ produced on the surface of ZrO_2 by reaction (1) at low temperatures during sintering might then serve as a diffusion barrier to retard the reaction between ZrO_2 and Si₃N₄.

^{*}To whom correspondence should be addressed. Fax: +81-869-63-2127

Therefore, the objective of the present work is to investigate how a TiO₂ coating on ZrO_2 affects the phase composition of ZrO_2/Si_3N_4 composites prepared by pressureless and hot-press sintering.


2 Experimental Procedure

Starting materials were α -Si₃N₄ (Ube Industries, Japan, grade E10), 3Y-ZrO₂ (Tosoh, Japan, stabilized by 3.0 mol% Y₂O₃), Ti-tetraisopropoxide (Wakou Chemical Industry, Japan) and Y₂O₃ (Wakou Chemical Industry, Japan, purity > 99.99%). The $3Y-ZrO_2$ powder was first dispersed into iso-propanal containing the desired amount of Ti-tetraisopropoxide by using ultrasonic stirrer for 10 min; then water was added up to a molar ratio of water to Ti-tetraisopropoxide of 20:1. After drying, the 3Y-ZrO₂ powder coated by titanium hydroxide was calcined in air at 550°C for 2h to produce TiO₂-coated 3Y-ZrO₂ powder. The coating amount of TiO₂ on 3Y-ZrO₂ was 5, 10, and 15 wt%, respectively. The as-received and the coated 3Y-ZrO₂ powders were then blended with Si_3N_4 by two-step ball-milling. Y_2O_3 was chosen as sintering additive. The blended powders were either die-pressed and pressureless-sintered in a flowing nitrogen atmosphere at the desired temperature for 2 h or hot-pressed under 20 MPa at the desired temperature for 1h. The phase compositions were analyzed by XRD, and microstructures were observed by TEM-EDS.

3 Results and Discussion

3.1 Effect of TiO₂ coating on the phase composition of pressureless-sintered samples

Figure 1 shows the XRD profiles of samples composed of 80 wt% Si₃N₄ and 20 wt% 3Y–ZrO₂ coated by 0, 5 and 15 wt% TiO₂, respectively, and

Fig. 1. XRD profiles of the samples coated by different amounts of TiO₂ and pressurelessly sintered at 1600°C. ($\triangle:\alpha$ -Si₃N₄ $\triangleq: \beta$ -Si₃N₄ $\equiv: t/C$ -ZrO₂ $\Leftrightarrow:$ TiN, $\diamondsuit:$ ZrN).

pressureless-sintered at 1600°C. It can be noticed that the intensity of ZrN decreased with increasing TiO₂, and that TiN was detected in the sample with 15 wt% TiO₂. According to XRD analysis, TiN could form by the reaction of TiO_2 and Si_3N_4 at 1250°C, a temperature at which no liquid occurs in the system TiO_2 -SiO₂. As a result, the migration of TiN from the surface of the ZrO₂ grains remains difficult (as shown in Fig. 5). This implies that the in-situ formed TiN and SiO₂ can prevent direct contact between ZrO₂ and Si₃N₄. If the amount of TiO_2 coated on ZrO_2 is very small, the amounts of TiN and amorphous SiO₂ are insufficient to inhibit the reaction between ZrO2 and Si3N4. Additionally, the shift of the 2θ angles of ZrN towards higher values from XRD (Fig. 1) indicates that some TiN was possibly consumed by entering the ZrN lattice to form a Zr-rich solid solution. Consequently, in the sample with little TiO₂ coating there was still some ZrN formed, and no TiN detected by X-ray diffraction. With an increase in the amount of TiO₂, more TiN and amorphous SiO₂ formed, thereby serving as a diffusion barrier for the reaction between ZrO2 and Si3N4. As a result, the TiN peak was strong and the formation of ZrN was suppressed. Figure 2 shows the relative intensity of t-ZrO₂, ZrN, and TiN in the above samples.

From Fig. 1, it seems that the effect of TiO₂ on the transformation of α to β -Si₃N₄ is not obvious according to the XRD data. Therefore, to improve the transformation of α - to β -Si₃N₄ and the densifying behaviour, and to further inhibit the reaction between ZrO₂ and Si₃N₄, a small amount of Y₂O₃, which was 1, 2, and 4 wt% of the Si₃N₄ content in the composites, respectively, was added to the above samples. It was found that ZrN disappeared completely and the 2θ value of ZrO₂ moved slightly towards lower angles with increased Y₂O₃ (as illustrated in Fig. 3). implying that more yttrium dissolved into the ZrO₂ lattice, causing more oxygen

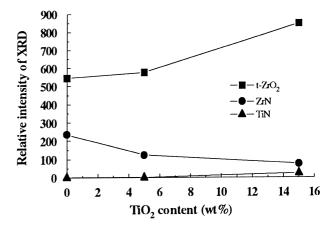
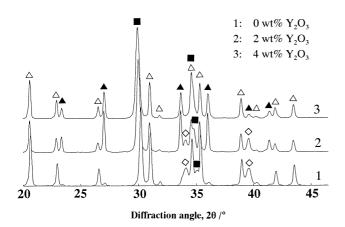
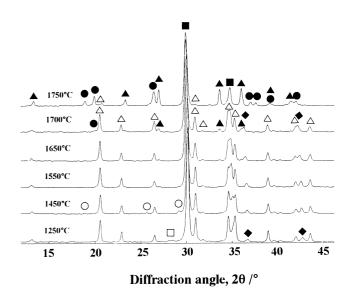



Fig. 2. Relative intensity of XRD peaks of t-ZrO₂, ZrN and TiN versus TiO₂ coating on 3Y–ZrO₂.

vacancies and then suppressing nitrogen intake in the ZrO_2 lattice (it was rather difficult by using EDS in the present experiment to discriminate between Y_2O_3 and ZrO_2 because of the small amount of Y_2O_3 in ZrO_2). Moreover, β -Si₃N₄ became the main phase with increase in Y_2O_3 from 0 to 4 wt%.

The effect of the TiO₂ coating on suppressing the formation of ZrN was also observed in the samples doped by $2 \text{ wt}\% \text{ Y}_2\text{O}_3$, as shown in Table 1. This

Fig. 3. XRD profiles of the 5 wt% TiO₂-coated $3Y-ZrO_2/Si_3N_4$ composite doped with different amounts of Y_2O_3 and pressurelessly sintered at $1600^{\circ}C$ ($\triangle: \alpha-Si_3N_4 \triangleq: \beta-Si_3N_4 \equiv: t/C-ZrO_2 \blacklozenge: TiN, \diamondsuit: ZrN$).


Table 1. Effect of TiO₂ content on the formation of ZrN in the sample with $2Wt\% Y_2O_3$

TiO_2 content (wt%)	5	10
Relative intensity of ZrN (%)	9.6	5.1

indicates that the combination of Y_2O_3 with the TiO₂ coating enhanced the suppressive effect on the formation of ZrN and still improved the transformation of α - to β -Si₃N₄.

3.2 Phase composition in the hot-pressed samples

To achieve a densified composite and to evaluate the effect of TiO_2 coating on the mechanical properties, samples were hot-pressed at 1750°C for 1 h under 20 MPa. However, TiN was not detected by X-ray diffraction even in the sample with 15 wt% TiO₂ coating on 3Y–ZrO₂. As mentioned above,

Fig. 4. XRD profiles of 15 wt% TiO₂-coated 3Y-ZrO₂/Si₃N₄ composite (ZrO₂:Si₃N₄=40:60) doped with 4 wt% Y₂O, and hot-pressed at different temperatures. (\bigcirc : Si₂N₂O, \bigcirc :Y₂Si₂O₇, \triangle : α -Si₃N₄, \blacktriangle : β -Si₃N₄, \blacksquare : t/cZrO₂ or Y_{0.15}Zr_{0.85}O_{1.93}, \blacklozenge : TiN, \square : ZrO₂).

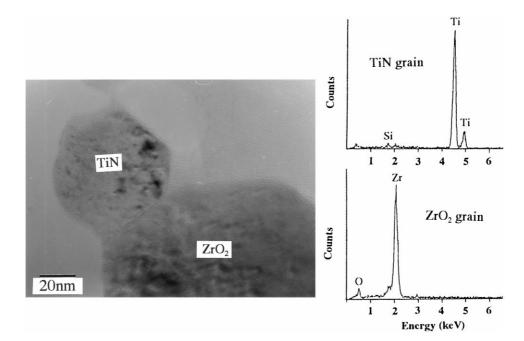


Fig. 5. TEM image of TiN and ZrO₂ grains, and EDS analysis of TiN and ZrO₂ grains hot-pressed at 1450°C.

TiN can be compatible with ZrO_2 , i.e. ZrO_2 does not oxidize TiN. Therefore, in order to clarify the absence of TiN at higher temperature, a study was made on 15 wt% TiO₂-coated $ZrO_2/$ Si_3N_4 composite, together with $4 \text{ wt}\% Y_2O_3$ additive. The sample was hot-pressed at different temperatures, and subsequently characterized by X-ray diffraction and observed by TEM with EDS.

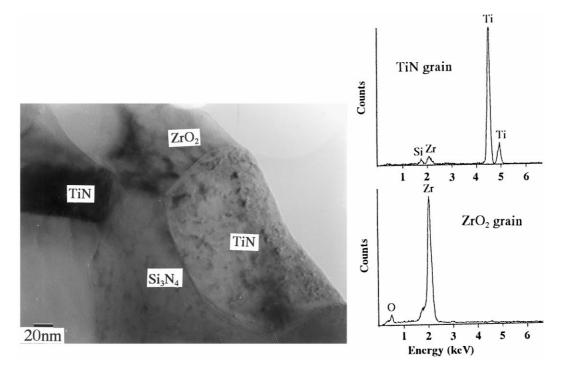
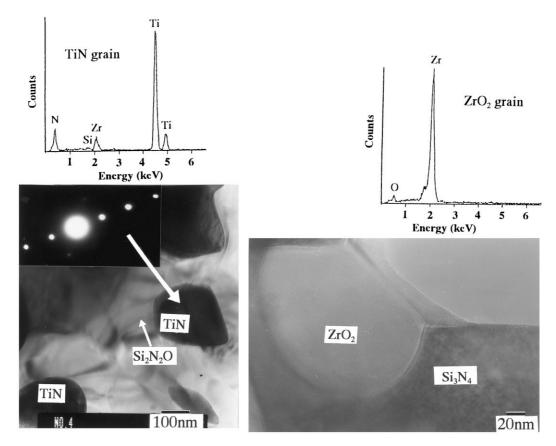



Fig. 6. TEM microstructure of the composite hot-pressed at 1650°C, and EDS analysis of TiN and ZrO₂ grains, showing some zirconium was dissolved into TiN lattice.

Fig. 7. TEM micrograph of the composite hot-pressed at 1750°C, and EDS analysis of TiN and ZrO₂ grains, showing much more zirconium was dissolved into TiN lattice, two times higher than that hot-pressed at 1650°C.

Figure 4 illustrates the X-ray profiles of these samples. It can be seen that TiN was formed even at 1250°C, where no eutectic liquid exists in the system TiO₂–SiO₂. As a result, it might be inferred that TiN was possibly formed through solid phase reaction other than via the solution-precipitation process reported in some references.¹¹ At 1450°C, γ -Y₂Si₂O₇, formed, suggesting that some SiO_2 , formed by the reaction of the TiO_2 coating with Si_3N_4 , reacted with Y_2O_3 to give γ - $Y_2Si_2O_7$. EDS analysis of the TiN grains by TEM (probesize: 15 nm) revealed that a little Si^{4+} , arising from the amorphous SiO₂, was taken into the TiN grains located on the surface of the ZrO2, as demonstrated in Fig. 5. At 1550°C, y-Y₂Si₂O₇ disappeared. At 1650°C, the peak of β -Si₃N₄ became strong, and the peaks of TiN shifted towards low angles, possibly implying that some Ti^{3+} , was replaced by zirconium ion in the TiN lattice. EDS analysis of TiN grains proved that the concentration of zirconium dissolved into the TiN grains was about 4% (calculated from the energy intensity of titanium and zirconium), as shown in Fig. 6. Additionally, TEM observation revealed that some fine-grained Si₂N₂O existed around the TiN grains.

When the composite was hot-pressed at 1700°C, a small amount of Si₂N₂O was detected by XRD and the peaks of β -Si₃N₄ became much stronger. However, there still remained a small amount of α -Si₃N₄. The sample hot-pressed at 1750°C showed that most α -Si₃N₄ was transformed into β -Si₃N₄; and no ZrN, or Zr-oxynitride was detected. TEM observation demonstrated that TiN grains neighboring with Si₂N₂O grains still existed in the microstructure of the composite, (Fig. 7), and EDS analysis revealed that the TiN grains absorbed as much as ca. 8% of zirconium in their lattice. No nitrogen was detected in ZrO₂ grains (Fig. 7), implying there might be no reaction between ZrO₂ and Si₃N₄.

4 Summary

The formation of ZrN could be suppressed in Si_3N_4/ZrO_2 composite by TiO_2 coated on $3Y-ZrO_2$. The combination of the TiO_2 coating with Y_2O_3 addition could suppress the formation of ZrN completely and still enhance the transformation of α into β -Si₃N₄. There was some solubility of zirconium ion in the lattice of TiN, and it increased with sintering temperature resulting in the XRD peaks of TiN towards lower angles.

Acknowledgements

The authors would like to give their appreciation to Mr. Hayasi, Mr. Kubotsu, and Mrs. Fujiwara who provided help with observing the microstructures and analyzing the compositions by using TEM.

References

- 1. Rice, R. W. and McDonough, W. J. J. Am. Ceram. Soc. 1975, **58**(5–6) 264.
- Claussen, N. and Jahm, J. J. Am. Ceram. Soc., 1978, 61(1– 21), 194.
- 3. Rak, Z. S. and van Tilborg, P. J., Key Eng. Mater., Vol. **89/91**, 1994, 147–151.
- 4. Cain, M. C. and Lewis, M. H., J. Am. Ceram. Soc., 1993, 76, 1401–1408.
- 5. Ekström, T., Herbertsson, H., James, M. and Fleck, I. J. Am. Ceram. Soc., 1994, 77(121) 3087–3092
- Weiss, J., Gauckler, L. J., Lukas, H. L. and Petzow, G., J. Mater. Sci., 1981, 2997–3005.
- Lange, F. F., Falk, L. K. L. and Davis, I. B., J. Mater. Res., 1987, 2(1), 66–76.
- Tjernlund, A. K., Pompe, R., Holmström, M. and Carlsson, R., Vol. 24. Science and Technology of Zirconia III, Copyright © 1999 Elsevier Science Limited. All rights reserved 1988, The American Ceramic Society, Inc.
- Trigg, M. B. and McCartney, E. R., J. Am. Ceram. Soc., 1981, (11), C-151–C-152.
- Watari, K., Valecillos, M. C., Brito, M. E., et al. J. Am. Ceram. Soc., 1996, 79(12), 310–108
- 11. Wang, C. M., J. Mater. Sci., 1996, 31 4709-4718.